Industrial doctorates

icon-Skills

Industrial doctorates

Scotland needs highly–educated data experts, in research and business, that are capable of forging new ideas at the edge of what is currently achievable. 

We offer funding for Industrial Doctorate programmes to support the development of high level data science talent.

We co-fund industrial doctorates at Scottish Universities

We co-fund industrial doctorate programmes at Scottish Universities, in collaboration with Scottish industry or public sector organisations. These industrial doctorates are designed to support the development of data science talent at a PhD / EngD level, while facilitating collaboration between industry and academia through applied research projects.

We are unable to fund students directly. Applications for funding must come from a Scottish University and be sponsored by an Industry or public sector Sponsor that has an operational base in Scotland.  If you require further information about this, contact skills@thedatalab.com.

If you are a Scottish-based organisation or an academic institution and you are interested in developing a data-driven Industrial Doctorate project, have a look at our current Industrial Doctorates Call for Funding.

Open doctorate vacancies

ENDS: Explainability of Non-Deterministic Solvers - A collaborative studentship with Robert Gordon University, University of Stirling, British Telecom, ARR Craib & the Data Lab

Applications are sought for A Research Studentship (PhD) in Computational Intelligence at Robert Gordon University (RGU) and at University of Stirling (UoS).

Proposed Research
This proposal is a cutting-edge investigation into explaining the decisions of commonly-used solvers for optimization problems. Two PhD students, one at RGU and one at UoS, will be working in partnership with BT and ARR Craib. This will exploit existing expertise and collaboration between the academic and industrial partners, with the potential for a step-change advance in solving challenging industrial optimisation problems.

Explainable AI is a well-established concept, but research success in the area has mainly used methods that mimic human reasoning, making the path to solution readily understood by end-users. In non-deterministic solvers, the path to solution is driven by random processes that accumulate problem learning, as opposed to deduction from prior knowledge or experience. A description of these processes, while explanatory, is hard for non-experts to comprehend. The innovation in ENDS is to derive human-understandable knowledge about the problem from the non-deterministic solution process and translate that into an explanatory form for end-users.

Two distinct approaches, mining trajectories and surrogate models, will derive problem knowledge in a new way. Two approaches bring robustness to the project: both will produce interesting doctoral level research for the students, while decreasing the project risk. ENDS will further innovate by expressing the problem knowledge gained via natural language generation and visualisation. End-users with no understanding of the solvers will be able to assess presented solutions in the light of a comprehensible explanation. Finally we will innovate by applying ENDS to two real world domains: workforce management at BT and real time truck scheduling at ARR Craib. Multiple applications with multiple partners ensures wide applicability and industrial relevance.

Project Management
One student will be based at RGU under the supervision of Prof. McCall and the other at UoS under the supervision of Dr. Brownlee. Both students will spend some time periodically at the BT research facility at Adastral Park, Ipswich, working with the BT research team and applying their research to BT datasets. ARR Craib will provide operational data and end-user feedback to both students.

The studentship will be of 36 months duration, commencing in February 2019. The studentship is fully funded and include Home/EU tuition fees as well as a tax-free stipend of £15,000 per annum. Non-EU students may also apply but will be required to fund the difference between Home/EU fees and International fees.

Key Skills
Applicants should have a first class Honours degree or a Masters at Distinction level in Computing Science or a strongly related discipline. Strong programming skills are highly desirable. Some knowledge of non-deterministic optimization algorithms, in particular population-based techniques such as genetic algorithms, is also highly desirable, though not essential. Applicants should have good personal and communication skills, strong professionalism and integrity and be confident working on their own initiative.

Applications
Applications should be emailed to  by 12 noon on Friday 13th December 2019. The applications should consist of a covering letter or personal statement of interest and a CV. Further information such as passport details or transcripts may be requested during the short-listing stage. Interviews will take place at RGU in Aberdeen in the week commencing 6th January 2020.

 

Funding Notes

Fully funded (UK/EU) studentship opportunity, one based at Aberdeen, one based at Stirling. Non UK/EU students may apply but will need to fund the difference between Home/EU and International fees. The studentships will cover fees and offer a tax-free stipend of £15,000 per annum.

Trustable Decentralised Applications on Reliable Blockchain Technologies

To design a suitable framework to support the development of reliable and trustable blockchain-based decentralised applications

Description of the project:

A fully funded PhD studentship on Trustable dapps on reliable blockchain technologies is available at the Computing Science and Mathematics division of the University of Stirling, UK, in collaboration with Wallet.Services.

The goal of this project is the design of a suitable framework to support the development of reliable and trustable blockchain-based decentralised applications. This project benefits from the participation of WalletServices (www.wallet.services), a well-established startup in the global fintech sector. WalletServices will provide use cases of interest and their industrial know-how to the project. The student is expected to carry out the research in collaboration with the company. The scientific project will take in consideration the latest developments in the technology, including, for instance, off-chain and multi-chain frameworks, tokenomics, proof of stake, blockchain programming and verification aspects. Specific interests and expertise of the student will also be taken into due consideration, as appropriate.

This project will be carried out under the joint supervision of Dr. Andrea Bracciali and WalletServices, within an international academic network with expertise in verification, game theory, cryptography, programming languages, modelling and finance, and will enjoy the support of a growing multidisciplinary group of researchers and students interested in blockchain technologies.

This project will also benefit from the thriving fintech Scottish sector, which has a strong interest in blockchain technologies, and could particularly contribute to the, academic or industrial, career development of the student.
Students with a background in, or across, computer science, economics, mathematics (non-exclusive list!), and interested in a scientific approach to breakthrough technologies are encouraged to apply. Exposure to formal verification, programming languages, game theory and/or understanding of “crypto-economics”, and/or competence in software development are a plus.

Application deadline: December 30, 2019
Start date: Negotiable
Stipend: £15,009 pa
Fees: Fully paid at UK or EU fee rate

Project description: https://www.findaphd.com/phds/project/trustable-decentralised-applications-on-reliable-blockchain-technologies/?p111838

If interested please email your CV to Dr. Andrea Bracciali abb@cs.stir.ac.uk in first instance and add a couple of lines explaining why you are interested in this research.

First Supervisor: Dr. Andrea Bracciali

For more information and to apply.

GET IN TOUCH

For further information, please contact the Skills Team.